Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Foliar exchange of mercury as a function of soil and air mercury concentrations.

Identifieur interne : 004263 ( Main/Exploration ); précédent : 004262; suivant : 004264

Foliar exchange of mercury as a function of soil and air mercury concentrations.

Auteurs : J A Ericksen [États-Unis] ; M S Gustin

Source :

RBID : pubmed:15081712

Descripteurs français

English descriptors

Abstract

Previous research has indicated that foliar mercury (Hg) flux is bi-directional, with influence from both atmospheric and soil Hg. This work investigated the role of soil and air Hg concentrations on foliar Hg exchange using a single-plant gas-exchange system. The exchange of Hg vapor with aspen seedlings grown in soil Hg concentrations of 0.03+/-0.01, 5.8+/-0.5, and 12.3+/-1.3 microg g(-1) and exposed to atmospheric Hg concentrations of 2.4+/-0.5, 11.0+/-0.9, and 30.4+/-2.2 ng m(-3) was measured. At background atmospheric Hg concentrations of 2.4 ng m(-3), foliage released Hg at all three soil Hg concentrations and fluxes ranged from 1.6 to 5.5 ng/m(2)/h. At higher atmospheric Hg concentrations (>11 ng m(-3)), net deposition to foliage ranged from -9 to -47 ng/m(2)/h, exhibiting increase uptake with higher air Hg concentrations. Fluxes associated with aspen showed an immediate response to changes in atmospheric Hg concentrations. Compensation points, the air concentration where no net flux of Hg vapor occurred, were 3-4 ng m(-3) in the light and 2-3 ng m(-3) in the dark for trees grown in soils of 0.03 and 6 microg g(-1) Hg content, and 5-6 ng m(-3) in the light and 2.5-3.5 ng m(-3) in the dark for trees grown in 12 microg g(-1) Hg soils.

DOI: 10.1016/j.scitotenv.2003.10.034
PubMed: 15081712


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Foliar exchange of mercury as a function of soil and air mercury concentrations.</title>
<author>
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Resource and Sciences, University of Nevada, Reno, Fleischmann Ag. Room 126, MS 370, Reno, NV 89557, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Resource and Sciences, University of Nevada, Reno, Fleischmann Ag. Room 126, MS 370, Reno, NV 89557</wicri:regionArea>
<placeName>
<region type="state">Nevada</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15081712</idno>
<idno type="pmid">15081712</idno>
<idno type="doi">10.1016/j.scitotenv.2003.10.034</idno>
<idno type="wicri:Area/Main/Corpus">004298</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004298</idno>
<idno type="wicri:Area/Main/Curation">004298</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004298</idno>
<idno type="wicri:Area/Main/Exploration">004298</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Foliar exchange of mercury as a function of soil and air mercury concentrations.</title>
<author>
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Environmental Resource and Sciences, University of Nevada, Reno, Fleischmann Ag. Room 126, MS 370, Reno, NV 89557, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Environmental Resource and Sciences, University of Nevada, Reno, Fleischmann Ag. Room 126, MS 370, Reno, NV 89557</wicri:regionArea>
<placeName>
<region type="state">Nevada</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="ISSN">0048-9697</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air (MeSH)</term>
<term>Environmental Monitoring (MeSH)</term>
<term>Mercury (analysis)</term>
<term>Mercury (chemistry)</term>
<term>Mercury (pharmacokinetics)</term>
<term>Plant Leaves (chemistry)</term>
<term>Plant Roots (chemistry)</term>
<term>Populus (chemistry)</term>
<term>Populus (physiology)</term>
<term>Soil Pollutants (analysis)</term>
<term>Soil Pollutants (pharmacokinetics)</term>
<term>Volatilization (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Air (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Mercure (analyse)</term>
<term>Mercure (composition chimique)</term>
<term>Mercure (pharmacocinétique)</term>
<term>Polluants du sol (analyse)</term>
<term>Polluants du sol (pharmacocinétique)</term>
<term>Populus (composition chimique)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (composition chimique)</term>
<term>Surveillance de l'environnement (MeSH)</term>
<term>Volatilisation (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Mercury</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Mercury</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacokinetics" xml:lang="en">
<term>Mercury</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Mercure</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Mercure</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacocinétique" xml:lang="fr">
<term>Mercure</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air</term>
<term>Environmental Monitoring</term>
<term>Volatilization</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Air</term>
<term>Surveillance de l'environnement</term>
<term>Volatilisation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous research has indicated that foliar mercury (Hg) flux is bi-directional, with influence from both atmospheric and soil Hg. This work investigated the role of soil and air Hg concentrations on foliar Hg exchange using a single-plant gas-exchange system. The exchange of Hg vapor with aspen seedlings grown in soil Hg concentrations of 0.03+/-0.01, 5.8+/-0.5, and 12.3+/-1.3 microg g(-1) and exposed to atmospheric Hg concentrations of 2.4+/-0.5, 11.0+/-0.9, and 30.4+/-2.2 ng m(-3) was measured. At background atmospheric Hg concentrations of 2.4 ng m(-3), foliage released Hg at all three soil Hg concentrations and fluxes ranged from 1.6 to 5.5 ng/m(2)/h. At higher atmospheric Hg concentrations (>11 ng m(-3)), net deposition to foliage ranged from -9 to -47 ng/m(2)/h, exhibiting increase uptake with higher air Hg concentrations. Fluxes associated with aspen showed an immediate response to changes in atmospheric Hg concentrations. Compensation points, the air concentration where no net flux of Hg vapor occurred, were 3-4 ng m(-3) in the light and 2-3 ng m(-3) in the dark for trees grown in soils of 0.03 and 6 microg g(-1) Hg content, and 5-6 ng m(-3) in the light and 2.5-3.5 ng m(-3) in the dark for trees grown in 12 microg g(-1) Hg soils.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15081712</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>06</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0048-9697</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>324</Volume>
<Issue>1-3</Issue>
<PubDate>
<Year>2004</Year>
<Month>May</Month>
<Day>25</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>Foliar exchange of mercury as a function of soil and air mercury concentrations.</ArticleTitle>
<Pagination>
<MedlinePgn>271-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Previous research has indicated that foliar mercury (Hg) flux is bi-directional, with influence from both atmospheric and soil Hg. This work investigated the role of soil and air Hg concentrations on foliar Hg exchange using a single-plant gas-exchange system. The exchange of Hg vapor with aspen seedlings grown in soil Hg concentrations of 0.03+/-0.01, 5.8+/-0.5, and 12.3+/-1.3 microg g(-1) and exposed to atmospheric Hg concentrations of 2.4+/-0.5, 11.0+/-0.9, and 30.4+/-2.2 ng m(-3) was measured. At background atmospheric Hg concentrations of 2.4 ng m(-3), foliage released Hg at all three soil Hg concentrations and fluxes ranged from 1.6 to 5.5 ng/m(2)/h. At higher atmospheric Hg concentrations (>11 ng m(-3)), net deposition to foliage ranged from -9 to -47 ng/m(2)/h, exhibiting increase uptake with higher air Hg concentrations. Fluxes associated with aspen showed an immediate response to changes in atmospheric Hg concentrations. Compensation points, the air concentration where no net flux of Hg vapor occurred, were 3-4 ng m(-3) in the light and 2-3 ng m(-3) in the dark for trees grown in soils of 0.03 and 6 microg g(-1) Hg content, and 5-6 ng m(-3) in the light and 2.5-3.5 ng m(-3) in the dark for trees grown in 12 microg g(-1) Hg soils.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ericksen</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Resource and Sciences, University of Nevada, Reno, Fleischmann Ag. Room 126, MS 370, Reno, NV 89557, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gustin</LastName>
<ForeName>M S</ForeName>
<Initials>MS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="N">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
<QualifierName UI="Q000493" MajorTopicYN="N">pharmacokinetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014835" MajorTopicYN="N">Volatilization</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2003</Year>
<Month>06</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2003</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15081712</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2003.10.034</ArticleId>
<ArticleId IdType="pii">S0048-9697(03)00641-7</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Nevada</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Gustin, M S" sort="Gustin, M S" uniqKey="Gustin M" first="M S" last="Gustin">M S Gustin</name>
</noCountry>
<country name="États-Unis">
<region name="Nevada">
<name sortKey="Ericksen, J A" sort="Ericksen, J A" uniqKey="Ericksen J" first="J A" last="Ericksen">J A Ericksen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004263 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004263 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15081712
   |texte=   Foliar exchange of mercury as a function of soil and air mercury concentrations.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15081712" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020